测量U、V、W端子输出电压,口诀适用于任何电压等级的三相电动机额定电流计算

关于新萄京

电工实用口诀*已知变压器容量,求其各电压等级侧额定电流 口诀 a :
容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。
在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀:
容量系数相乘求。
已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b
: 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。
说明:
正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。
已知三相电动机容量,求其额定电流 口诀:容量除以千伏数,商乘系数点七六。
说明:
口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。
三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。 口诀c
使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。口诀c
中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。
运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。
误差。由口诀c
中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c
推导出的5个专用口诀,容量与电流的倍数,则是各电压等级数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。
*测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀:
无牌电机的容量,测得空载电流值,
乘十除以八求算,近靠等级千瓦数。说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。
测知电力变压器二次侧电流,求算其所载负荷容量 口诀:
已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。
电压等级三千伏,一安四点五千瓦。 电压等级六千伏,一安整数九千瓦。
电压等级十千伏,一安一十五千瓦。 电压等级三万五,一安五十五千瓦。 说明:
电工在日常工作中,常会遇到上级部门,管理人员等问及电力变压器运行情况,负荷是多少?电工本人也常常需知道变压器的负荷是多少。负荷电流易得知,直接看配电装置上设置的电流表,或用相应的钳型电流表测知,可负荷功率是多少,不能直接看到和测知。这就需靠本口诀求算,否则用常规公式来计算,既复杂又费时间。
“电压等级四百伏,一发零点六千瓦。”当测知电力变压器二次侧(电压等级400V)负荷电流后,安培数值乘以系数0.6便得到负荷功率千瓦数。
测知白炽灯照明线路电流,求算其负荷容量
照明电压二百二,一安二百二十瓦。说明:工矿企业的照明,多采用220V的白炽灯。照明供电线路指从配电盘向各个照明配电箱的线路,照明供电干线一般为三相四线,负荷为4kW以下时可用单相。照明配电线路指从照明配电箱接至照明器或插座等照明设施的线路。不论供电还是配电线路,只要用钳型电流表测得某相线电流值,然后乘以220系数,积数就是该相线所载负荷容量。测电流求容量数,可帮助电工迅速调整照明干线三相负荷容量不平衡问题,可帮助电工分析配电箱内保护熔体经常熔断的原因,配电导线发热的原因等等。测知无铭牌380V单相焊接变压器的空载电流,求算基额定容量
口诀三百八焊机容量,空载电流乘以五。
单相交流焊接变压器实际上是一种特殊用途的降压变压器,与普通变压器相比,其基本工作原理大致相同。为满足焊接工艺的要求,焊接变压器在短路状态下工作,要求在焊接时具有一定的引弧电压。当焊接电流增大时,输出电压急剧下降,当电压降到零时(即二次侧短路),二次侧电流也不致过大等等,即焊接变压器具有陡降的外特性,焊接变压器的陡降外特性是靠电抗线圈产生的压降而获得的。空载时,由于无焊接电流通过,电抗线圈不产生压降,此时空载电压等于二次电压,也就是说焊接变压器空载时与普通变压器空载时相同。变压器的空载电流一般约为额定电流的6%~8%(国家规定空载电流不应大于额定电流的10%)。这就是口诀和公式的理论依据。
***
已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流
口诀: 电机过载的保护,热继电器热元件;
号流容量两倍半,两倍千瓦数整定。说明:
容易过负荷的电动机,由于起动或自起动条件严重而可能起动失败,或需要限制起动时间的,应装设过载保护。长时间运行无人监视的电动机或3kW及以上的电动机,也宜装设过载保护。过载保护装置一般采用热继电器或断路器的延时过电流脱扣器。目前我国生产的热继电器适用于轻载起动,长时期工作或间断长期工作的电动机过载保护。
热继电器过载保护装置,结构原理均很简单,可选调热元件却很微妙,若等级选大了就得调至低限,常造成电动机偷停,影响生产,增加了维修工作。若等级选小了,只能向高限调,往往电动机过载时不动作,甚至烧毁电机。正确算选380V三相电动机的过载保护热继电器,尚需弄清同一系列型号的热继电器可装用不同额定电流的热元件。热元件整定电流按“两倍千瓦数整定”;热
元件额定电流按“号流容量两倍半”算选;热
继电器的型号规格,即其额定电流值应大于等于热元件额定电流值。
已知380V三相电动机容量,求其远控交流接触器额定电流等级 口诀:
远控电机接触器,两倍容量靠等级; 步繁起动正反转,靠级基础升一级。说明:
目前常用的交流接触器有CJ10、CJ12、CJ20等系列,较适合于一般三相电动机的起动的控制。
已知小型380V三相笼型电动机容量,求其供电设备最小容量、负荷开关、保护熔体电流值
口诀: 直接起动电动机,容量不超十千瓦; 六倍千瓦选开关,五倍千瓦配熔体。
供电设备千伏安,需大三倍千瓦数。说明:
口诀所述的直接起动的电动机,是小型380V鼠笼型三相电动机,电动机起动电流很大,一般是额定电流的4~7倍。用负荷开关直接起动的电动机容量最大不应超过10kW,一般以4.5kW以下为宜,且开启式负
荷开关(胶盖瓷底隔离开关)一般用于5.5kW及以下的小容量电动机作不频繁的直接起动;封闭式负荷开关(铁壳开关)一般用于10kW以下的电动机作不频繁的直接起动。两者均需有熔体作短路保护,还有电动机功率不大于供电变压器容量的30%。总之,切记电动机用负荷开关直接起动是有条件的!
负荷开关均由简易隔离开关闸刀和熔断器或熔体组成。为了避免电动机起动时的大电流,负荷开关的容量,即额定电流;作短路保护的熔体额定电流,分别按“六倍千瓦选
开关,五倍千瓦配熔件”算选,由于铁壳开关、胶盖瓷底隔离开关均按一定规格制造,用口诀算出的电流值,还需靠近开关规格。同样算选熔体,应按产品规格选用。
已知笼型电动机容量,算求星-三角起动器(QX3、QX4系列)的动作时间和热元件整定电流
口诀: 电机起动星三角,起动时间好整定; 容量开方乘以二,积数加四单位秒。
电机起动星三角,过载保护热元件; 整定电流相电流,容量乘八除以七。说明:
QX3、QX4系列为自动星形-三角形起动器,由三只交流接触器、一只三相热继电器和一只时间继电器组成,外配一只起动按钮和一只停止按钮。起动器在使用前,应对时间继电器和热继电器进行适当的调整,这两项工作均在起动器安装现场进行。电工大多数只知电动机的容量,而不知电动机正常起动时间、电动机额定电流。时间继电器的动作时间就是电动机的起动时间(从起动到转速达到额定值的时间),此时间数值可用口诀来算。
时间继电器调整时,暂不接入电动机进行操作,试验时间继电器的动作时间是否能与所控制的电动机的起动时间一致。如果不一致,就应再微调时间继电器的动作时间,再进行试验。但两次试验的间隔至少要在90s以上,以保证双金属时间继电器自动复位。热
继电器的调整,由于QX系列起动器的热电器中的热元件串联在电动机相电流电路中,而电动机在运行时是接成三角形的,则电动机运行时的相电流是线电流(即额定电流)的1/√3倍。所以,热继电器热元件的整定电流值应用口诀中“容量乘八除以七”计算。根据计算所得值,将热继电器的整定电流旋钮调整到相应的刻度-中线刻度左右。如果计算所得值不在热继电器热元件额定电流调节范围,即大于或小于调节机构之刻度标注高限或低限数值,则需更换适当的热继电器,或选择适当的热元件。
已知笼型电动机容量,求算控制其的断路器脱扣器整定电流 口诀:
断路器的脱扣器,整定电流容量倍; 瞬时一般是二十,较小电机二十四;
延时脱扣三倍半,热脱扣器整两倍。说明:自动断路器常用在对鼠笼型电动机供电的线路上作不经常操作的断路器。如果操作频繁,可加串一只接触器来操作。断路器利用其中的电磁脱扣器作短路保护,利用其中的热脱扣器(或延时脱扣器)作过载保护。断路器的脱扣器整定电流值计算是电工常遇到的问题,口诀给出了整定电流值和所控制的笼型电动机容量千瓦数之间的倍数关系。
“延时脱扣三倍半,热脱扣器整两倍”说的是作为过载保护的自动断路器,其延时脱扣器的电流整定值可按所控制电动机额定电流的1.7倍选择,即3.5倍千瓦数选择。热脱扣器电流整定值,应等于或略大于电动机的额定电流,即按电动机容量千瓦数的2倍选择。
已知异步电动机容量,求算其空载电流 口诀:
电动机空载电流,容量八折左右求; 新大极数少六折,旧小极多千瓦数。说明:
异步电动机空载运行时,定了三相绕组中通过的电流,称为空载电流。绝大部分的空载电流用来产生旋转磁场,称为空载激磁电流,是空载电流的无功分量。还有很小一部分空载电流用于产生电动机空载运行时的各种功率损耗(如摩擦、通风和铁芯损耗等),这一部分是空载电流的有功分量,因占的比例很小,可忽略不计。因此,空载电流可以认为都是无功电流。从这一观点来看,它越小越好,这样电动机的功率因数提高了,对电网供电是有好处的。如果空载电流大,因定子绕组的导线载面积是一定的,允许通过的电流是一定的,则允许流过导线的有功电流就只能减小,电动机所能带动的负载就要减小,电动机出力降低,带过大的负载时,绕组就容易发热。但是,空载电流也不能过小,否则又要影响到电动机的其他性能。一般小型电动机的空载电流约为额定电流
的30%~70%,大中型电动机的空载电流约为额定电流的20%~40%。具体到某台电动机的空载电流是多少,在电动机的铭牌或产品说明书上,一般不标注。可电工常需知道此数值是多少,以此数值来判断电动机修理的质量好坏,能否使用。
口诀是现场快速求算电动机空载电流具体数值的口诀,它是众多的测试数据而得。它符合“电动机的空载电流一般是其额定电流的1/3”。同时它符合实践经验:“电动机的空载电流,不超过容量千瓦数便可使用”的原则(指检修后的旧式、小容量电动机)。口诀“容量八折左右求”是指一般电动机的空载电流值是电动机额定容量千瓦数的0.8倍左右。中型、4或6极电动机的空载电流,就是电动机容量千瓦数的0.8倍;新系列,大容量,极数偏小的2级电动机,其空载电流计算按“新大极数少六折”;对旧的、老式系列、较小容量,极数偏大的8极以上电动机,其空载电流,按“是小极多千瓦数”计算,即空载电流值近似等于容量千瓦数,但一般是小于千瓦数。运用口诀计算电动机的空载电流,算值与电动机说明书标注的、实测值有一定的误差,但口诀算值完全能满足电工日常工作所需求。
****
已知电力变压器容量,求算其二次侧(0.4kV)出线自动断路器瞬时脱扣器整定电流值
口诀: 配变二次侧供电,最好配用断路器;
瞬时脱扣整定值,三倍容量千伏安。说明:
当断路器作为电力变压器二次侧供电线路开关时,断路器脱扣器瞬时动作整定值,一般按
*****电工需熟知应用口诀 巧用低压验电笔
低压验电笔是电工常用的一种辅助安全用具。用于检查500V以下导体或各种用电设备的外壳是否带电。一支普通的低压验电笔,可随身携带,只要掌握验电笔的原理,结合熟知的电工原理,灵活运用技巧很多。
判断交流电与直流电口诀 电笔判断交直流,交流明亮直流暗,
交流氖管通身亮,直流氖管亮一端。 说明:
首先告知读者一点,使用低压验电笔之前,必须在已确认的带电体上验测;在未确认验电笔正常之前,不得使用。判别交、直流电时,最好在“两电”之间作比较,这样就很明显。测交流电时氖管两端同时发亮,测直流电时氖管里只有一端极发亮。
判断直流电正负极口诀: 电笔判断正负极,观察氖管要心细,
前端明亮是负极,后端明亮为正极。 说明:
氖管的前端指验电笔笔尖一端,氖管后端指手握的一端,前端明亮为负极,反之为正极。测试时要注意:电源电压为110V及以上;若人与大地绝缘,一只手摸电源任一极,另一只手持测民笔,电笔金属头触及被测电源另一极,氖管前端极发亮,所测触的电源是负极;若是氖管的后端极发亮,所测触的电源是正极,这是根据直流单向流动和电子由负极向正极流动的原理。
判断直流电源有无接地,正负极接地的区别口诀
变电所直流系数,电笔触及不发亮; 若亮靠近笔尖端,正极有接地故障;
若亮靠近手指端,接地故障在负极。 说明:
发电厂和变电所的直流系数,是对地绝缘的,人站在地上,用验电笔去触及正极或负极,氖管是不应当发亮的,如果发亮,则说明直流系统有接地现象;如果发亮在靠近笔尖的一端,则是正极接地;如果发亮在靠近手指的一端,则是负极接地。
判断同相与异相口诀 判断两线相同异,两手各持一支笔,
两脚与地相绝缘,两笔各触一要线, 用眼观看一支笔,不亮同相亮为异。 说明:
此项测试时,切记两脚与地必须绝缘。因为我国大部分是380/220V供电,且变压器普遍采用中性点直接接地,所以做测试时,人体与大地之间一定要绝缘,避免构成回路,以免误判断;测试时,两笔亮与不亮显示一样,故只看一支则可。判断380/220V三相三线制供电线路相线接地故障口诀
星形接法三相线,电笔触及两根亮, 剩余一根亮度弱,该相导线已接地;
若是几乎不见亮 ,金属接地的故障。 说明:
电力变压器的二次侧一般都接成Y形,在中性点不接地的三相三线制系统中,用验电笔触及三根相线时,有两根比通常稍亮,而另一根上的亮度要弱一些,则表示这根亮度弱的相线有接地现象,但还不太严重;如果两根很亮,而剩余一根几乎看不见亮,则是这根相线有金属接地故障。
现场急救触电 才人工呼吸法
触电人脱离电源后,应立即进行生理状态的判定。只有经过正确的判定,才能确定抢救方法。
判定有无意识。救护人轻拍或轻摇触电人的户膀(注意不要用力过猛或摇头部,以免加重可能存在的外伤),并在耳旁大声呼叫。如无反应,立即用手指掐压人中穴。当呼之不应,刺激也毫无反应时,可判定为意识已丧失。该判定过程应在5S内完成。
当触电人意识已丧失时,应立即呼救。将触电人仰卧在坚实的平面上,头部放平,颈部不能高于胸部,双臂平放在驱干两侧,解开紧身上衣,松开裤带,取出假牙,清除口腔中的异物。若触电人面部朝下,应将头、户、驱干作为一个整体同时翻转,不能扭曲,以免加重颈部可能存在的伤情。翻转方法是:救护人跪在触电人肩旁,先把触电人的两只手举过头,拉直两腿,把一条腿放在另一条腿上。然后一只手托住触电人的颈部,一只手扶住触电人的肩部,全身同时翻转。
判定有无呼吸。在保持气道开放的情况下,判定有无呼吸的方法有:用眼睛观察触电人的胸腹部有无起伏;用耳朵贴近触电人的口、鼻,聆听有无呼吸的声音;用脸或手贴近触电人的口、鼻,测试有无气体排出;用一张薄纸片放在触电人的口、鼻上,观察纸片是否动。若胸腹部无起伏、无呼气出,无气体排出,纸片不动,则可判定触电人已停止呼吸。该判定在3~5S内完成。关键词:电工实用口诀

变频器维修者必须树立这样的观念:逆变模块与驱动电路在故障上有极强的连带性。当模块炸裂损坏后,驱动电路势必受到冲击而损坏;模块的损坏也可能正是因驱动电路的故障而造成。因而无论表现为驱动电路或是逆变输出电路的故障,必须将逆变输出电路与驱动电路一同彻底检查。对主电路上电试机,须在确定驱动电路正常——能正常输出六路激励脉冲的前提下进行。对驱动电路的检修见本书第四章。检查驱动电路正常后,将损坏逆变模块换新,才可以上电试机。整机装配后的上电试机,是一个必须慎重从事的事件。必须采取相应的措施,保证异常情况出现时,新换IGBT模块不至于损坏。试机时,变频器启动瞬间是最“要命的一个时刻”,无一点防护措施下的匆忙上电,会使新换上的价值昂贵的模块损坏于刹那间。以前所付出的检修的努力不仅白废了,而且造成了更大的损失,有可能使故障范围扩大了。有的维修人员炸过几次模块,便对变频器维修望而却步了。采取相应的上电试机措施,能基本上杜绝上电试机逆变模块损坏的发生,只要细心一点的话基本没有问题。方法一:将逆变模块的供电断开,其实电路中为连接铜排,拆去一段连接铜排,即将三相逆变电路的正供电端断开。注意:断开点必须在储能电容之后!假定在KM之前断开,储能电容上的储存电量,会在逆变电路故障发生时,释放足够的能量将逆变模块炸毁!连接简图如下:图1
变频器逆变回路的上电检修电路接线一图在断开处串入两只25W交流220V灯泡,因变频器直流电压约为530V左右,一只灯泡的耐压不足(故障情况下),须两只串联以满足耐压要求。即使逆变电路有短路故障存在,因灯泡的降压限流作用,将逆变电路的供给电流限于100mA以内,逆变模块不会再有损坏的危险。变频器空载,U、V、W端子不接任何负载。先切断驱动电路的模块OC信号输出回路,避免CPU做出停机保护动作,中断试机过程(具体操作方法见博文《驱动电路的维修》)。上电后可能出现如下种情况:1、变频器在停机状态,灯泡亮。三只模块有一只上、下臂IGBT漏电,如Q1和Q2。此种漏电在低电压情况下不易暴露,如万用表不能测出,但引入直流高压后,出现了较大的漏电,说明模块内部有严重的绝缘缺限。购买的拆机品模块有时候出现这种情况。可用排除法检修,如拆除U相模块(Q1、Q2)后灯泡不亮了,说明该模块已损坏。2、上电后,灯泡不亮,但接受运行信号后,灯光随频率的上升同步闪烁发亮,说明三相逆变模块中,出现一相上臂或下臂IGBT损坏故障。如当Q1激励信号而开通时,已损坏的Q2与导通的Q1一起,形成了对供电电源的短路。两只串联灯泡承受530V直流电压而发出亮光。3、上电后,灯泡不亮,接受运行信号后,灯泡仍不亮;用指针式万用表的交流500V档,测量U、V、W端子输出电压,随频率上升而均匀上升,三相输出电压平衡。说明逆变输出模块基本上是好的,可以带些负载试验了。4、上电后,灯泡不亮,启动变频器后,灯泡仍不亮。但测量三相输出电压,不平衡,严重偏相。故障原因:a、某一臂IGBT管子内部已呈开路性损坏;b、某一臂IGBT管子导通内阻变大,接近开路状态了。对此故障的检测方法如、让我们掌握用直流电压档测量变频器U、V、W端子输出电压的方法。当变频器输出端子输出三相平衡的交流电压时,说明输出电压中不含有直流成分。换句话说,此时指针式万用表的直流500V档所测得直流电压值为零。当输出偏相时,实质是逆变输出电路的某一臂IGBT导通不良或呈开路状态,致使该相输出为正或负的半波输出,或者该相输出的正
、负半波不对称,输出电压中出现了直流分量。一臂IGBT为开路状态时,则为纯直流分量了。此时用万用表直流500V档测量,可得出如下结果:假定测量U、V之间无直流电压,但测量W、V和W、U之间有直流电压值出现,说明W相模块不良。若为红笔搭W相,表针正偏转,测说明W相下臂IGBT导通不良或没有导通;若黑表笔搭接W端子表针为正偏转,则说明U相上臂IGBT导通不良或没有导通。也可以换一种测量方法,直接测量U、V、W三个输出端子对P、N之间的电压值。仍用直流500V档。由分析可以得出结论:当U相的上、下臂IGBT管子Q1、Q2完全正常地对称导通时,在U端子形成了“等效的”对直流供电530V的分压,U端子P、N两点都能测出二分之一的530V直流电压,即260V左右的直流电压。而异常状态下,可得出这样的测量结果,如P、U之间所测电压远远高于260V甚至等于530V,说明Q1内部断路或导通不良;若在U、N之间所测电压远远高于260V甚至等于530V,则说Q2内部C、E之间断路或导通不良,不能形成对530V的“正常分压”而使U相直流电压升高。、下述的测量方法,也为一有效方法。修复一台37kW东元变频器,检查为逆变模块损坏,型号为CM100DU-24H。购得一块相同型号的模块,走了一遍脱机测量的所有“程序”,确认模块无问题后,装机上电试验。三相输出电压很不平衡,彻底检查驱动电路确认无故障后,按下图2-6(简化图)接线方式测量出新换模块导通内阻变大,换新模块后故障排除。
关键词:变频器电路如何

1
引言交流变频调速技术是现代电力传动技术重要发展方向,随着电力电子技术,微电子技术和现代控制理论在交流调速系统中的应用,变频交流调速已逐渐取代了过去的滑差调速,变极调速,直流调速等调速系统,越来越广泛的应用于工业生产和日常生活的许多领域。随着变频调速器的广泛应用,许多工程技术人员对它也有了相当的了解,一般通用型变频器大致包括以下几个部分:1整流电路,2直流中间电路,3逆变电路,4控制电路。而产生可调电压和可调频率的逆变电路,又应该是变频器各组成部分的核心技术。2
驱动电路逆变电路主要包括:逆变模块和驱动电路。由于受到加工工艺,封装技术,大功率晶体管元器件等因数的影响,目前逆变模块主要由日本(东芝,三菱,三社,富士,三肯。)及欧美(西门子,西门康,摩托罗拉,IR)等少数厂家能够生产。驱动电路作为逆变电路的一部分,对变频器的三相输出有着巨大的影响。驱动电路的设计一般有这样几种方式分立插脚式元件组成的驱动电路;光耦驱动电路;厚膜驱动电路;专用集成块驱动电路等几种。
分立插脚式元件的驱动电路分立插脚式元件组成的驱动电路在80年代的日本和台湾变频器上被广泛使用,主要包括日本(富士:G2,G5.三肯:SVS,SVF,MF.,
春日,三菱Z系列K系列等)台湾(欧林,普传,台安.)等一系列变频器。随着大规模集成电路的发展及贴片工艺的出现,这类设计电路复杂,集成化程度低的驱动电路已逐渐被淘汰。
光耦驱动电路光耦驱动电路是现代变频器设计时被广泛采用的一种驱动电路,由于线路简单,可靠性高,开关性能好,被欧美及日本的多家变频器厂商采用。由于驱动光耦的型号很多,所以选用的余地也很大。驱动光耦选用较多的主要由东芝的TLP系列,夏普的PC系列,惠普的HCPL系列等。以东芝TLP系列光耦为例。驱动IGBT模块主要采用的是TLP250,TLP251两个型号的驱动光耦。对于小电流(15A)左右的模块一般采用TLP251。外围再辅佐以驱动电源和限流电阻等就构成了最简单的驱动电路。而对于中等电流(50A)左右的模块一般采用TLP250型号的光耦。而对于更大电流的模块,在设计驱动电路时一般采取在光耦驱动后面再增加一级放大电路,达到安全驱动IGBT模块的目的。
厚膜驱动电路厚膜驱动电路是在阻容元件和半导体技术的基础上发展起来的一种混合集成电路。它是利用厚膜技术在陶瓷基片上制作模式元件和连接导线,将驱动电路的各元件集成在一块陶瓷基片上,使之成为一个整体部件。使用驱动厚膜对于设计布线带来了很大的方便,提高了整机的可靠性和批量生产的一致性,同时也加强了技术的保密性。现在的驱动厚膜往往也集成了很多保护电路,检测电路。应该说驱动厚膜的技术含量也越来越高。
专用集成块驱动电路现在还出现了专用的集成块驱动电路,主要由IR的IR2111,IR2112,IR2113等,其它还有三菱的EXB系列驱动厚膜。三菱的M57956,M57959等驱动厚膜。此外,现在的一些欧美变频器在设计上采用了高频隔离变压器加入了驱动电路中(如丹佛斯VLT系列变频器)。应该说通过一些高频的变压器对驱动电路的电源及信号的隔离,增强了驱动电路的可靠性,同时也有效地防止了强电部分的电路出现故障时对弱电电路的损坏。在实际的维修中我们也感觉到这种驱动电路故障率很低,大功率模块也极少出现问题。在我们平时的日常生产使用中,大功率模块损坏是一种常见的故障现象。3
故障现象
分析损坏的原因可能是多种多样的。马达短路,对地绝缘不好,电机堵转,外部电源电压过高都有可能造成变频器大功率模块的损坏,我们在实际维修中更换大功率模块时一定要确定驱动电路的正常工作。否这更换后很容易引起大功率模块的再次损坏。另外我们也要了解GTR模块和IGBT模块驱动电路的区别,两种功率模块前者为电流驱动,后者则是电压驱动。随着电子元器件,大规模集成电路的发展,驱动电路也在不断向着高集成化方向发展,而且功能在不断扩大,性能也在不断提高。同时也对我们这些从事变频维修行业的人提出了更高的要求,以上只是本人在变频维修中的一些心得,同时也希望从事这行业的人多多沟通交流。
关键词:通用变频器常见

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图